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In [i] a general classification scheme was presented for spatially local laminar flows, 
and the major studies of spatially local flows were noted. 

The presen: study will consider the compensation flow regime [2], in which the infra- 
sonic portion of a wall boundary layer near a body is perturbed. Various cases of flow in 
perturbed regions near thin spatial roughness on a body surface are distinguished, and nu- 
merical solutions are obtained in the linear approximation. It is demonstrated that the form 
of propagation of a pressure perturbation depends on the form of the roughness and the ratio 
of its characteristic width and length. 

i. We will consider passage of a uniform flow of viscous gas at Mach numbers M~ 2 
1 ~ O(i) over a plane plate, upon the surface of which at a distance s from the leading edge 
there is located a small spatial roughness, with the Reynolds number being large, but sub- 
critical, Re~ = p=u=s = e -2. We will construct a steady-state solution of the Navier- 
Stokes equation as e ~ 0. In the future we will use only dimensionless variables, referring 
all linear dimensions to s the pressure to p~u~ 2, and the enthalpy to u~ 2, with remaining 
flow functions being referenced to their values in the uniform incident flow. 

Concerning the characteristic dimensions of the small roughness, we assume that its 
thickness a is less than the characteristic boundary layer thickness on the plate at this 
point [a < 6 ~ O(e)], while its length b (a < b ~ i) and width c (a < c), i.e., we study 
flow around a small rough spot, located on the "bottom" of the boundary layer on the plate. 

We will consider the compensation regime of flow over small spatial roughness [i, 3, 
4], where essentially only the infrasonic shear portion of the boundary layer in close prox- 
imity to the plate is perturbed. We will analyze the most general case, in which the per- 
turbed region 3 has characteristic dimensions x ~ O(b), y ~ O(a), and z ~ O(c), i.e., equal 
in order of magnitude to the characteristic dimensions of the roughness itself, viscosity 
is significant, and nonlinear perturbations of the longitudinal velocity u - u ~ hu are in- 
troduced. Then, considering that in the boundary layer the estimate u ~ O(y/e) is valid, 
we have 

a ,-~ O ( e b l / 3 ) ,  ~ / 2  < a < b ,  c ,  u .-~ A u  . - ,  0 ( b l / 3 ) .  ( 1 . 1 )  

The s m a l l  r o u g h n e s s  t h e n  i n t r o d u c e s  p e r t u r b a t i o n s  o f  s h e a r  s t r e s s  and t h e r m a l  f l u x  e q u a l  
in  o r d e r  o f  m a g n i t u d e  t o  t h e  v a l u e s  w i t h i n  t h e  b o u n d a r y  l a y e r  a t  t h e  p l a t e  s u r f a c e  t h e m s e l v e s .  

2. For  r o u g h n e s s  which  i s  n o t  t o o  na r row  (b ~ c)  in  r e g i o n  3 f rom t h e  e q u a t i o n s  o f  
c o n s e r v a t i o n  o f  l o n g i t u d i n a l  and t r a n s v e r s e  momentum and c o n t i n u i t y ,  u s i n g  Eq. ( 1 . 1 )  we 
can o b t a i n  e s t i m a t e s  f o r  t h e  p e r t u r b a t i o n s  in  p r e s s u r e ,  t r a n s v e r s e ,  and v e r t i c a l  v e l o c i t i e s :  

A p  ~-. O ( b e / ~ ) ,  w ~-, O ( b ~ / 3 / c ) ,  v , - ,  O ( e / b l / 3 ) .  (2.1) 

If the pressure perturbation is Created by interaction of the roughness with a uniform in- 
cident flow, then Ap ~ O(a/b) and comparing this estimate to Eq. (2.1), it is simple to see 
that the compensation regime of flow over nonnarrow roughness is realized for 

a N O(~bII3), ~s12 < b < 83z ~, b ~ c. (2.2) 

Equations (I.i), (2.1), and (2.2) allow us to introduce in region 3 the following inde- 
pendent variables and asymptotic expansions of the flow functions: 

x = b x  3, y = e b l l S y ~ ,  z = cz 3, ( 2 . 3 )  
U = b l / 3 u 3  + . . . .  v = ( e / b U ~ ) ~  + . . . .  w = ( b 4 1 3 / c ) w ~ +  . . . .  

A p  = b 2 / 3 p ~ +  - . . . .  h = h w + bl/3h~-+ - . . .~  p = p w  + . . . .  ~ = ~ + . . .~  
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with the subscript w referring to quantities in the boundary layer at the plate surface at 
the point where the roughness is located. 

Substituting the expansions of Eq. (2.3) into the Navier-Stokes equations and perform- 
ing the limiting transition as ~ + 0, e ~I~ < b 5 c shows that in the first approximation 
the flow in region 3 is described by the equations of a spatial Prandtl boundary layer for 
an incompressible gas 

Ox-~ + O---uj~ + ["U} ~za =0 ,  P~ ~u~b-~zj + v~O-~+ [ 'U) wa~z~) + b-~% =~= @--~, (2.4) 

o<" t + + "=  + = o ,I , 

(where Pr is the Prandtl number). On the surface of the roughness y3 = f(x3, z3) the usual 
adhesion and nonpenetration conditions must be satisfied: 

u s =  ~ = w~ = h a = O (y~ = ] ( ~ ,  za)).  ( 2 . 5 )  

Initial boundary conditions as x z ~ -~ or z 3 + • can be found by merging the solution from 
region 3 with the near-the-wall portion of the boundary layer on the plate: 

u a - + A Y 3 ,  ha"-) 'Bga,  v3, u'3, p a - + O  @ 3 - + - - o o ) ;  ( 2 . 6 )  

ua"+ Ay3 ,  h~--+ Bg3, v3, wa, pa-)-O (z~-+ +_.co). ( 2 . 7 )  

Here h = (Su0/BY2)w; B = (3h0/BY2)w; Y2 = Y/c, u0(y2), and h0(y2) are the longitudinal veloc- 
ity and enthalpy profiles in the boundary layer on the plate. 

To find the external boundary conditions as Y3 + =' it is necessary to consider per- 
turbed region 2, the characteristic thickness of which y ~ O(b) at E 3/2 < b < ~ or y ~ O(E) 
at e <- b < E: 3/4, i.e., is "fatter" than region 3. Therefore in region 2 in the first case 
we introduce independent variables and asymptotic expansions of the flow functions 

x2 = xa = x/b ,  y~ = y / b ,  z.2 = z~ = z/c,  (2.8) 
u = (b /s)Ay2 -+- (s/bl/a)u 2 + . . . ,  v = (dbl/3)v2 -k  . . . .  

w = (~b~/~/e)w2 %- . . . ,  Ap  = b~lap,. --p- . . . ,  p = 9~ q- . . . ,  

h = hw + (b/s)Bv~ + (e/b~/3)h2 + . . . ,  

while in the: second case we have variables and an expansion of the form 

x2 = x 3  = x/b ,  Y2 = y /e ,  z 2 = z~ = z/c,~ (2.9) 
u = uo(y=) -I- b~/3u2 -}- . . . .  v ~ -  ( 8 / b l / a ) l ) ~  ~t . . . ,  

w = (bS/3/c)w2 + ...., Ap  = b2/3p2 + . . . .  

P ---- Po(b '2 )  -[- b~/~92 + . . . ,  k = ho(y~) + b~/ah~ + . . .  

[P0(Y2) is the density profile in the boundary layer on the plate]. Substitution of the 
expansions of Eq. (2.8).or (2.9) in the Navier-Stokes equation and performance of the limiting 
transition as e § 0, c 3/2 < b < c 3/4, b 5 c shows that in both cases the flow in region 2 
will be described in the first approximation by Euler equations linearized relative to the 
incident flow [u = (b/r 2 or u = u0(y2)], whence 

A p ~  + OpjOx2 -+ 0 (Y2 --+ 0). ( 2 . 1 0 )  

Merging of the solutions in regions 2 and 3 with use of Eq. (2.10) gives the following 
external boundary conditions: 

u3"-'~AY~' ha - -~BY3 '  Apwv8 +OP~/ax3" -~O '  w 3 - - ~ O ( Y 3 - ~ ) "  ( 2 . 1 1 )  

For  t h e  f u t u r e ,  i t  w i l l  be  c o n v e n i e n t  t o  t a k e  b ~ c in  Eqs.  ( 2 . 4 ) - ( 2 . 7 )  and ( 2 . 1 1 ) ,  
d e s c r i b i n g  t h e  c o m p e n s a t i o n  f l ow  r e g i m e  o v e r  t h i n  nonna r row r o u g h n e s s  ( 2 . 2 ) ,  and t o  i n t r o d u c e  
new variables (without indices) 
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xa = blx~ Ya = alY, z3 = caz, (2 .12)  

us = Aalu, v3 ----(Aa~/ba) v, w n = (Aaacl/ba) w, Pa = P~Aia~P, ha = Balh,  

where a l ,  b I, c I are the thickness, length, and width of the roughness in scales of a ,  b, 
c, respectively [for example, the physical dimensioned thickness of the roughness is equal 
to s I, a ~ O(Ebl/S), at~ 0(i)]. In the variables of Eq. (2.12) system (2.4) takes on the 
form 

Ou Ov ~w Ou Ou Ow Op = tio~u 
a-~ + ~ +-57 = 0 '  u ~ + v U y + w ~ + C o 7  ay 2'; (2 .13)  

Oy @ = 0 "  u-57 + v ~ + az + D ~ = ~ ay 2 ,, 

Oh -4;" Oh Oh II a~h ~twb 1 v ~ +  -- 2, l-i= �9 
U ~-~ W ~ Pr Og 9wAa~ ' 

with internal boundary conditions from Eq. (2.5) 

u---- m---- w = h---- 0 ( y - - ] ( x ,  Ez));  ( 2 . 1 4 )  

while the external boundary conditions of Eq. (2.11) transform to 

u, h--~ y, w - + O ,  v + COp/Ox-)-O ( y - +  oo); (2 .15)  

and i n i t i a l  c o n d i t i o n s  ( 2 . 6 ) ,  (2 .7 )  t ake  on the  form 

u, h - + y ,  v, w, p - + O  (x-~--oo);  (2 .15)  

u, h - * - y ,  y, w, p--+O ( z - -+•  (2 .17)  

Here the coefficients C, D, and E, expressing the ratios of the actual roughness measure- 
ments a I, h I, and ci, take on the values 

C - - - - E = i ,  D =  (bl/ca) 2 (b~ < ca) ( 2 . 1 8 )  

while the form of the roughness f = (x, Ez) is normalized to unity with respect to height, 
width, and length. 

It is obvious that the boundary problem of Eqs. (2.13)-(2.18) is applicable to study 
of the flow about various nonnarrow roughnesses (b I <_ ci). As D + 0, w + 0, and the solu- 
tion will describe flow around wide roughnesses (b z << cl) in planar sections z = const. 

If in place of transformation (2.12) we use 

xa = blx, Ya = aaIIl/SY, z3 = ciz, (2 .19)  

u3 = AalHa/3u, v3 = (Aa~/b~) Ili13v,: w3 = (Aa~cl/bO IIaI3w,; 

P3 = P,~A~a~II:I3 P, h8 = Bal  H1/ah, 

we can then  w r i t e  sys tem (2 .4 )  and i n t e r n a l  boundary c o n d i t i o n s  (2 .5 )  as 

Ou -b Ov Ow Ou au Ou ~ O~u Ux ~ + - ~ = 0 ,  u ~ x + v ~ _ g + w ~ +  C ~ . = ~ _ u 2  ' (2.20) 

Op O, Ow u Ow Ow Op O~w 
O"y = u ~x "-k @ -k w'~z -k D - ~  = Oy" ' 

Oh Oh Oh t OZh ; 
U'~X "4- Y'~g "}- W"~ = p"~"Oy 2 

u =  v =  w = h =  0 (y = H-a/a/@, Ez))~ (2 .21)  

while conditions (2.6), (2.7), and (2.11) reduce to Eqs. (2.15)-(2.17). 

For the variables used in boundary problems (2.13)-(2.18) or (2.15)-(2.18), (2.20), 
and (2.21) the dimensionless components of the shear stress ~xy, ~yz and thermal flux q can 
be expressed by 
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"cry = Ou/Og, "cu~ = (ct/bl)Ow/Og, q = OMOg ( 2 . 2 2 )  

while in the boundary layer on the plate near its surface Xxy = q = i, ~yz = 0. 

The similarity parameter H characterizes the ratio of viscous layer thickness to thick- 
ness of the roughness. As H + 0 region 3 becomes nonviscous, and it is then convenient to 
use equations and boundary conditions (2.13)-(2.17). In this case it is necessary to examine 
in greater detail the viscous and thermally conductive sublayer near the surface of the 
roughness [511. As H + = the viscous layer is significantly thicker than the roughness and 
it is possible to linearize the boundary problem of Eqs. (2.15)-(2.17), (2.20), (2.21) with 
respect to the parameter X = H-I/3 ~ i. 

Differentiating the equation of conservation of longitudinal momentum, Eq. (2.20), with 
respect to x, and the equation for transverse momentum with respect to z, combining the re- 
sults, and using boundary condition (2.21) for p = p(x, z) we obtain a conventional Poisson 
equation 

C o2-----~P + D O2P. o 2 (au aw) 022 022 = @-~ \0~ + ~-~ (V = H-t /z / (x ,  Ez)); ( 2 . 2 3 )  

t h e n  d i f f e r e n t i a t i n g  t h e  same e q u a t i o n s  w i t h  r e s p e c t  t o  y ,  we can e l i m i n a t e  p ( x ,  z )  f rom 
s y s t e m  (2.201) 

Ou ov ow o (uOU Ou w ~  ] O~u ( 2 . 2 4 )  
0~+~+~=0, ~ ~+v~+ o~:= ors' 
0 ( Ow + Om Ow~ Oaw Oh Oh Oh t 8~h 

~u~ v ~ + w ~ ] -  od' u~+v~+w~= Pr 0g 2 

I t  i s  known [2] t h a t  t h e  c o n d i t i o n  f o r  d e t e r m i n i n g  p r e s s u r e  in  t h e  c o m p e n s a t i o n  r eg ime  o f  
f l ow  o v e r  r o u g h n e s s ,  Eq. ( 2 . 1 5 ) ,  

is equivalent to the condition 

v + c @ / o x  --.  o (y ---)- co) 

u = y + 0(t) (y -~  ~ ) ,  ( 2 . 2 5 )  

which  i n d i c a t e s  t h a t  f o r  t h e  f low r eg ime  s t u d i e d  change  in  t h i c k n e s s  o f  t h e  r o u g h n e s s  i s  
com pe nsa t e d  by change  in  t h e  t h i c k n e s s  o f  t h e  w a l l  p o r t i o n  o f  t h e  b o u n d a r y  l a y e r  on t h e  p l a t e .  
T h e r e f o r e ,  t:he c o m p l e t e  b o u n d a r y  p rob lem o f  Eqs.  ( 2 . 1 5 ) - ( 2 . 1 7 ) ,  ( 2 . 2 0 ) ,  ( 2 . 2 1 )  w i t h  t h e  u se  
o f  E q . ( 2 . 2 5 )  in  p l a c e  o f  t h e  c o n d i t i o n  f o r  p ( x ,  z)  in  Eq. ( 2 . 1 5 )  decomposes  i n t o  two p r o b -  
l ems ,  the first of which with use of Eq.(2.24) permits determination of the velocity and 
enthalpy components, while the second gives the pressure distribution from Eq. (2.23). It 
should be noted that at values of the coefficients C, D, E given by Eq. (2.18) the first 
boundary problem does not depend on the roughness dimensions al, bl, ci, and its solution 
describes flow over a roughness with height, width, and length normalized to unity, while 
the ratio of roughness length to width bl/cl appears only in the second boundary problem. 

3. For narrow roughness (b > c) in region 3 using the equations for continuity and 
conservation of transverse momentum together with Eq. (i.i) we can obtain values for the 
vertical and transverse velocities and transverse pressure gradient 

v ,'-. O(e/bt/a), w N O(db2/3), Op/& .': w Ow/Oz .-. 0(c/b4/3). ( 3 , 1 )  

I f  t h e  p r e s s u r e  p e r t u r b a t i o n  i s  c r e a t e d  by i n t e r a c t i o n  o f  t h e  r o u g h n e s s  w i t h  a u n i f o r m  i n -  
c i d e n t  f l o w ,  t h e n  i n  t h e  p e r t u r b e d  r e g i o n  w i t h  c h a r a c t e r i s t i c  d i m e n s i o n s  r < x ~ b ~ l ,  
e < y ~ z ~ c < b f l ow  f u n c t i o n  p e r t u r b a t i o n s  a r e  i n d u c e d :  

h u  ... O(a/c), v .-, w ,-. O(a/b), Op/Oz ,-. ~ Ow/Ox ,... O(a/b~). 

Comparing t h i s  e s t i m a t e  f o r  8p/Sz  w i t h  Eq. ( 3 . 1 )  we f i n d  t h a t  t h e  c o m p e n s a t i o n  r eg ime  
f o r  f l ow  o v e r  na r row  r o u g h n e s s  i s  r e a l i z e d  a t  

a .-. O(eba/8), e ~/2 < b < t ,  a < c < rain(b, elbt/3). ( 3 . 2 )  
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If the pressure perturbation decays in the transverse direction at a distance z ~ O(c), 
then from Eq. (3.1) 

~ P  ~ O(c2/ba/3)' ( 3 . 3 )  

i . e . ,  n a r r o w  r o u g h n e s s e s  i n d u c e  a p r e s s u r e  p e r t u r b a t i o n  wh ich  i s  ( b / c )  2 s m a l l e r  t h a n  f o r  
b r o a d  r o u g h n e s s  [ s e e  t h e  5p e s t i m a t e  o f  Eq. ( 2 . 1 ) ] .  

However ,  f o r  n a r r o w  r o u g h n e s s e s ,  Eq. ( 3 . 2 ) ,  t h e  maximum r o u g h n e s s  d i m e n s i o n  i s  t h e  
l e n g t h  b ,  s o  t h a t  a s i t u a t i o n  i s  p o s s i b l e  in  wh ich  t h e  p r e s s u r e  p e r t u r b a t i o n  d e c a y s  in  t h e  
t r a n s v e r s e  d i r e c t i o n  o n l y  a t  a d i s t a n c e  z ~ O ( b ) .  Then i t  becomes  n e c e s s a r y  a l s o  t o  con -  
s i d e r  p e r t u r b e d  r e g i o n  4,  wh ich  i s  w i d e r  t h a n  r e g i o n  3, w i t h  c h a r a c t e r i s t i c  d i m e n s i o n s  x ~ 
z ~ O ( b ) ,  y ~ O ( a ) ,  in  wh ich  a p r e s s u r e  p e r t u r b a t i o n  

h p  .-~ 0(c/bl]3)  �9 ( 3 . 4 )  

i s  i n t r o d u c e d ,  i . e . ,  ( b / c )  t i m e s  g r e a t e r  t h a n  t h e  p e r t u r b a t i o n  o f  Eq. ( 3 . 3 ) .  

The e s t i m a t e s  o f  Eqs .  ( 3 . 1 ) - ( 3 . 4 ) p e r m i t  us  t o  i n t r o d u c e  in  r e g i o n  3 t h e  f o l l o w i n g  i n d e -  
p e n d e n t  v a r i a b l e s  and a s y m p t o t i c  f l o w  f u n c t i o n  e x p a n s i o n s :  

X : bx3, y -~ ebi/3y3, z = cz3, ( 3 . 5 )  

U = b l /3 t t3  - ~  . . . .  z) : (8/bl/S)z;3 - ~  . . . .  w = (c /b2/3)w3 ~ -  . . .~  

A p  = (c/bl/3)P31 -j- (e2/b4/a)p3~ --~ . . . ,  h = hw + bX/3h3 Jc ...,: 

p = p ~ +  .... ~ =  ~ + . . .  

Substitution of the expansions of Eq. (3.5) in the Navier-Stokes equations and perform- 
ance of the limiting transition e + 0, e 3/2 < c < b < 1 shows that in the first approximation 
the flow in region 3 is described by the equations of a Prandtl spatial boundary layer for 

an incompressible gas 

w 

au 3 a% aw~ _ _ ( 3 . 6 )  
+ + = o ,  ap,  _ _ _ o ,  

aY 3 ay 3 az 3 - -  

- -  I)3 a y  3 = s 

[ cow a 8u'  s Ow 3 ) OP3~- 02w8 

Oh 3 Oh 3 Oh3~ ~t w a2h~ 
" - - +  w3-ff~3) - -  Pr ayS3 Pw lt3 0x 3 -b ~)~ Oy 3 

If the pressure perturbation attenuates in the transverse direction at a distance z ~ O(c), 
then Psz ~ 0, P32 = P3, and the solution of system (3.6) must satisfy internal and initial 
boundary conditions (2.5)-(2.7). 

To find the external boundary conditions as Y3 + ~ it is again necessary to consider 
perturbed region 2, the characteristic thickness of which y ~ O(c) at e 3/2 < c < e or y ~ 
O(e) at e ~ c < min (b, e/bl/S). Introducing corresponding independent variables and asymp- 
totic flow function expansions and performing the necessary merger of the expansions in re- 
gions 2 and 3, we have external boundary conditions of the form of Eq. (2.11) 

(3.7) 

w3~O ( ~ ) .  

Here Psl ~ 0, P32 = P3, if the pressure perturbation attenuates in the transverse direction 

at a distance z ~ O(c). 

If in the boundary problem of Eqs. (2.5)-(2.7), (3.6), and (3.7), describing the com- 
pensation regime of flow over narrow roughnesses, Eq. (3.2), for the condition of pressure 
perturbation attenuation in the transverse direction at a distance z ~ O(c), we take b - c, 
it will be identical to boundary problem (2.4)-(2.7), (2.11). Then using the variables of 
Eq. (2.12) or (2.19) at 
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in the first case or at 
2 2 2 2 2/s  

i n  t h e  s e c o n d ,  we can  r e d u c e  t h e  p r o b l e m  t o  t h e  fo rm o f  Eqs .  
( 2 . 2 0 ) ,  ( 2 . 2 1 ) ,  r e s p e c t i v e l y ,  a t  

( 3 . 8 )  

( 3 . 9 )  

(2.13)-(2.17) or (2.15)-(2.17), 

C = ( c / b 1 )  2, D = E = I (e 1 ~ bt). ( 3 . 1 0 )  

Equations (3.8), (3.9) show that in the case of flow over narrow roughness the pressure 
perturbation induced is (bl/cl) 2 times smaller than for flow over nonnarrow roughness [com- 
pare Eqs. (2.12) and (2.19)]. 

As C + 0 in the boundary problem under study terms with Op/Sx vanish and its solution 
describes flow over narrow roughness (c I ~ b~). 

It is obvious that Eqs. (2.22)-(2.25) are valid here, and that it is possible to divide 
the complete boundary problem into two parts, the first of which describes flow over a nor- 
malized roughness, while the second defines the pressure perturbation, and contains the 
square of the roughness length C = (cl/bl) 2 as a similarity parameter. 

4. Since for flow over narrow roughness the pressure perturbation attenuates in the 
transverse direction at a distance z ~ O(b), boundary condition (2.7) will not be valid for 
region 3, and it becomes necessary to consider region 4. The missing boundary conditions 
for region 3 as z 3 + • can then be found from merger conditions for the asymptotic expan- 
sions of the flow functions in regions 3 and 4. 

However, at b ~ c the boundary problem for flow over roughness can immediately be ob- 
tained if in Eqs. (2.4)-(2.7), (2.11) or Eqs. (2.5)-(2.7), (3.6), (3.7), we take b ~ c and 
introduce new variables (without indices): 

I t  3 

xa = bl  x ,  ga = a l g ,  z3 = b l z ,  

= 2 A a l w  ' = A a l U  , v a ( A a l / b l )  v,  wa = 

(4.1) 

o r  

its =AalIIllau, v~=(Aa~/b~)n~l~v, w=AaJI~t%,: 
P3 -~ ( P ~ A 2 a ~ c l / b l )  YI~'Ia P,  ha = Ba~l]'/~h" 

xa -~ blX,  Y8 -~ aiHUag~; za = b i z .  

( 4 . 2 )  

Then the boundary problem takes on the form of Eqs. (2.13)-(2.17) or Eqs. (2.15)-(2.17), 
(2.20), (2.21), respectively, for 

C = D  = c ~ b ~  E = b l / c l  ( c l ~ ' ~ b l ) "  ( 4 . 3 )  

It is obvious that in this case the pressure perturbation is only (bl/c I) times smaller than 
for flow over nonnarrow roughness [compare Eqs. (2.12) and (2.19)], while the dimensionless 
shear stress components Xxy , Xy z and the thermal flux q can be calculated with the expres- 
sions 

�9 ~y = o u / @ ,  ~ z  = o w l @ ,  q = ~ h l @ .  (4.4) 

For  t h e  c a s e  o f  f l o w  o v e r  r o u g h n e s s  c o n s i d e r e d  h e r e ,  Eqs .  ( 2 . 2 3 ) - ( 2 . 2 5 )  a r e  a l s o  v a l i d ,  
and a g a i n  it: i s  p o s s i b l e  t o  s e p a r a t e  t h e  c o m p l e t e  b o u n d a r y  p r o b l e m  i n t o  two.  Only now t h e  
b o u n d a r y  p r o b l e m  f o r  d e t e r m i n a t i o n  o f  v e l o c i t y  c o m p o n e n t s  and e n t h a l p y  c o n t a i n  a s  a s i m i l a r i t y  
p a r a m e t e r  t h e  r a t i o  o f  t h e  r o u g h n e s s  l e n g t h  t o  i t s  w i d t h  - E = b l / c  1. 

In the limiting case as C, D + O, g ~ ~, c I ~ b I change in roughness form in the trans- 
verse direction is described by a delta function, which indicates the necessity of introducing 
two different scales in the transverse direction: z ~ O(c) and z ~ O(b), c < b. Therefore, 
we will consider again the perturbed region 4 with characteristic dimensions x ~ z ~ O(b), 
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y ~ O(ebi/3), in which the pressure perturbation is defined by Eq. (3.4), while the trans- 
verse velocity w is given by Eq. (3.1). Then from the continuity equation we obtain esti- 
mates for the perturbations in longitudinal and vertical velocities Au ~ O(c/b=/~), v ~ 
O(ec/b~/3), while in region 4 we introduce the following independent variables and asymp- 
totic expansions of the flow functions: 

x 4 = x~ = x/b,  y~ = g~ = yleb i/3, z~ = z/b,  ( 4 . 5 )  
u = bll~Ag~ + (clb~l~)u4 + ... .  u = (eclb41~)v4 't- .... 

w = (c/b2/3)w4 + ... ,  Ap  = (c/bl/3)p 4 -+- .. . .  h = h~, + b~mBg4 + (c/b2/3)h4 + . . . ,  

P = 9w -~ . . . .  ~t = ~ ,  J- ... 

Substitution of the expansion of Eq. (4..5) in the Navier-Stokes equation and carrying out 
of the limiting transition as e + O, e 3/2 < c < b <- i reveals that in the first approxima- 
tion the flow in region 4 is described by equations of a Prandtl spatial boundary layer for 
an incompressible gas linearized relative to the incident flow (u = b1/3Ay4) 

o~ 4 o~ 4 ow 4 ( o% ~ op 4 _  o2~4 
~ + - -  + = O, p~ ~Ay~ + Av4)  + 7z~ - -  tiw ~ ' ~  ( 4 . 6 )  

OP't -- 0,- p w A Y 4 ~  + Op4 02w4 

Since region 4 is wider than the roughness in order of magnitude, the adhesion and nonpene- 
tration conditions must now be satisfied on the surface of a plane plate 

u 4= v 4= w~=h 4= 0 (g4= 0). (4.7) 

The initial boundary conditions as x 4 § or z4 + • are again obtained by merging the 
solution in region 4 with the near-the-wall portion of the boundary layer on the plate 

U4' V4' W4, P4, h 4 - ~ 0  @4 - ~ - ~ 1 7 6  z r162  ( 4 . 8 )  

w h i l e  t h e  e x t e r n a l  b o u n d a r y  c o n d i t i o n s  a r e  found  f rom m erg e r  o f  t h e  s o l u t i o n  f o r  r e g i o n  2 
[ u s i n g  e x p a n s i o n s  o f  t h e  form o f  Eq. ( 2 . 8 )  o r  ( 2 . 9 )  f o r  c ~ b] 

u4~ w4~ h4.-+ O~ Apwv~ + Op4/OX4"~ 0 (g4-~ oo). ( 4 . 9 )  

By merg ing  t h e  e x p a n s i o n s  o f  Eqs.  ( 3 . 5 )  and ( 4 . 5 )  we o b t a i n  i n s u f f i c i e n t  i n i t i a l  bounda ry  
c o n d i t i o n s  f o r  r e g i o n  3 as  z 3 + • 

ua--->- Aga, ~ " ~  O, Ow3/Oz~--+ O, h3---~" By3 ~3 ---~ .f-oo)~ (4.10) 

i . e . ,  f l ow  o v e r  na r row  t h i n  r o u g h n e s s ,  Eq. ( 3 . 2 ) ,  where  t h e  p r e s s u r e  p e r t u r b a t i o n  a t t e n u a t e s  
in  t h e  t r a n s v e r s e  d i r e c t i o n  a t  a d i s t a n c e  z ~ O ( b ) ,  i s  d e s c r i b e d  in  r e g i o n  3 by a s o l u t i o n  
o f  t h e  bounda ry  p rob l em o f  Eqs .  ( 2 . 5 ) ,  ( 2 . 6 )  ( h e r e  by P3 we must  u n d e r s t a n d  P 3 2 ) ,  ( 3 . 6 ) ,  
( 3 . 7 ) ,  and ( 4 . 1 0 ) ,  which  as  z 3 + • d e f i n e s  t h e  t r a n s v e r s e  p r e s s u r e  g r a d i e n t  d i s t r i b u t i o n  

Op32/Oz a = +- G (x3) pwASa~cl/b~ (za ~ +__ co). 

For  r e g i o n  4,  m e r g e r  o f  t h e  e x p a n s i o n s  o f  Eqs .  ( 3 . 5 )  and ( 4 . 5 )  w i t h  u s e  o f  Eq. 
yields 

OpJOz 4 -4- G @4) ~ ~ = p w A ' a i c / b i  (z 4 -~ q- 0) 

and t h e  s o l u t i o n  o f  t h e  b o u n d a r y  p rob l em  ( 4 . 6 ) - ( 4 . 9 ) ,  ( 4 . 1 2 )  in  r e g i o n  4 d e f i n e s  

(4.11) 

(4.11) 

(4.12) 

p~ = p~(z~)  (z~ ~ 0). (4.13) 

In the new variables (without indices) of Eqs. (2.12), (3.8) at P3 = P32 or Eqs. (2.19), 
(3.9) at P3 = P32 the boundary problem of Eqs. (2.5), (2.6) (P3 = P32), Eqs. (3.6), (3.7), 
and (4.10) for region 3 takes on the form of Eqs. (2.13)-(2.16) and 
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u, h - + y ,  v, Ow/Oz--+O ~-++__c~) 

or Eqs. (2.15), (2.16), (2.20), (2.21), (4.14) at 

(4.14) 

C =  O, D = E =  t ,  ( 4 . 1 5 )  

where Eqs. (2..22)-(2.25) are obviously valid and it is again possible to divide the complete 
boundary problem into two, the second of which defines the pressure perturbation in region 
4 [see Eqs. (4.11), (4.12)]. 

In region 4 for the boundary problem of Eqs. (4.6), (4.9), (4.12) we again introduce 
new variables (without indices) 

x4 = bix, Y4 = alIP/Sg, z4 = blz, 

u ,  = (Aalcl/bl)  u, v t = ( Aa~ci/b~) Ill13v, w~ =- (Aalc /bx)  w,  

p, = (p~A~a;e~/bl) IU"p, h~ = (Ba~c/bx) h, 

(4.16) 

and obtain 

a t  

Ou -b at, Ow Ou ~ 02u 
oz ~ + - ~ = 0 ,  y ~ + v + C = -  Oy2 

Ow Op 02w Oh + t O~h 
YTz + D ~  = ~y~, Y ~ .  v =  F-y oy2, 

u = v =  w = h = O (y = O), 

u, v, w, p, h - +  O (x ~ - - c o ,  z---)-++_oo ), 

u, w, h - +  O, v + COp/Ox ~ O (g--+ ~ ) ,  

Op/Oz = + G ( x ) n  -~/~ (z - ~  + o )  

Op _ 0,, 
Oy 

( 4 , 1 7 )  

C = D = i .  ( 4 . 1 8 )  

Here  i t  i s  a l s o  p o s s i b l e  t o  d i v i d e  t h e  c o m p l e t e  b o u n d a ry  p rob lem o f  Eq. ( 4 . 1 7 )  i n t o  two,  
t h e  s e c ond  o f  which  d e f i n e s  t h e  p r e s s u r e  p e r t u r b a t i o n  in  r e g i o n  3 [ s e e  Eq. ( 4 . 1 3 ) ] .  

5. As ]] + ~ t h e  b o u n d a r y  p rob l ems  d e s c r i b i n g  t h e  v a r i o u s  c a s e s  o f  t h e  c o m p e n s a t i o n  
regime of flow over fine roughness on the surface of a plane plate permit linearization with 
respect to t]ne small parameter X = H -I/3 ~ I: 

u = y + k U +  . . . .  v = ~ V  + . . . .  w = ~ W +  . . . ,  
p = ~ p  + .. . .  h = y + ~H + ... ( 5 . 1 )  

In the new wariables of Eq. 
(2.17), (2.21) and (2.25) for the dynamic portion of the problem we obtain 

C ~ + O ~ af 
ax2 o~ = 07 (y = 0), 

OF 02F O(  oU OW) 
Y-~z = ~y2 ' P =- P (x, z), F (x, y, z) = ~ -'~x + "~- , 

p ,  F - ~ O  ( z - ~ - - ~ ) ,  P - ~ O  ( x - ~  ~) , ,  

Y 

O/(z, Ez) 
F - + O ,  Fdy--)  ox (y -+  oo), P--+O ( z - + +  oo), 

0 

( 5 . 1 )  from Eqs. (2.23), (2.24) and boundary conditions (2.15)- 

( 5 . 2 )  

where again when necessary we use the natural condition of attenuation of the pressure per- 
turbation far from the roughness. 

At values of the coefficients C, D, E from Eq. (2.18) boundary problem (5.2) is conveni- 
ent for study of flow around various nonnarrow roughnesses (b I ~ cl), while propagation of 
the pressure perturbation is determined by an elliptical type equation. In the limiting 
case of wide roughness (b I ~ cl, D + 0, W + 0) the solution of boundary problem (5.2) will 
describe flow over individual roughness sections at z = const, while the pressure perturba- 
tions are found by solution of the equation 
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op/oz = ~ u / @ ~  (y  = 0 ) ,  

for which transmission of perturbations up the flow does not occur (see also [2]). 

For values of the coefficients C, D, E from Eq. (3.10) boundary problem (5.2) permits 
a solution for narrow roughness (c I < bl) , where the pressure perturbation attenuates in 
the transverse direction at a distance equal in order of magnitude to the characteristic 
width of the roughness. Let the form of the roughness f(x, z) = f1(x)f2(z); then F = 
f2(z)F1(x, y), and for ~i ~ bl the pressure perturbation is defined by solution of the equa- 
tion 

O~PlOz ~ = &(z)OF~l@ (y = 0), ( 5 . 3 )  

which will satisfy the attenuation conditions as z § • if 

S &  (z) ctz = O. ( 5 . 4 )  
~ o 0  

7 1 4  



The form of the function f2(z) defines the change in the pressure perturbation in the trans- 
verse direction, while solution of a parabolic-type equation Fl(x, y) defines the longitud- 
inal change, i.e., in this limiting case also perturbations are not transported up the flow. 

A numerical solution of boundary problem (5.2) for condition (5.4) was obtained for 
a roughness f(x, z) = exp (-x 2 - 12)(i - 212). Figure i shows pressure perturbation distri- 
butions P(x, 0) qlong the line of symmetry z = 0. For c I m b I each section of the rough- 
ness z = const induces a pressure perturbation independent of the other sections, and a pro- 
tuberance of the form exp (-x 2) in the infrasonic wall portion of the boundary layer on the 
plate produces rarefaction (curve i). At c I = 4bz, for example, the roughness produces 
smaller pressure perturbations than at c I m bz, and because of perturbation propagation 
up the flow positive pressure perturbations appear at x < 0 (curve 2). As the ratio cl/b l 
decreases, tlhe intensity of the pressure perturbation falls [at cz/b I < i the values of the 
pressure perturbation are multiplied by (bi/ci)2], and pressure perturbation propagation 
maintains an elliptical character (curves 3 and 4 for cl/b I = I and 0.25, respectively). 
In the limiting case b I m Cl the distribution is described by the expression (line 5) P(x, 
z) = -0.5exp(-z2)SFz/3y (y = 0). 

The isobars shown in Figs. 2-4 (b I < ci, b I = Cl, and b I m ci, respectively) reveal 
the complex character of pressure perturbation propagation at b I = c I and the degeneration 
of the flow in the longitudinal or transverse directions for b I ~ c z or b I m c I. 

If condition (5.4) is not satisfied, then for narrow roughness (c I < bz) the pressure 
perturbation attenuates in the transverse direction at a distance comparable to the charac- 
teristic length of the roughnesses, and the solution of boundary problem (5.2) with coeffi- 
cient values C, D, E from Eq. (4.3) is valid. 

In the limiting case (c I ~ bz) in region 3 the pressure perturbation distribution is 
described by the solution of boundary problem (5.2) with C, D, E from Eq. (4.15). Obviously 
it is unnecessary here to satisfy the pressure perturbation attenuation conditions at z 
• and there is no transport of perturbations up the flow. Then for roughnesses with longi- 
tudinal symmetry we obtain from Eq. (5.2) 

aF~ C 
C ( x ) = + _ ~ J f ~ ( z ) d  ~. (y=O).  

0 

(5.5) 

Pressure perturbations attenuate in region 4, for which it follows from Eqs. (4.17), 
(5.5) that 

O~p/ax 2 + 02p/Oz 2 = O, 

p--~ 0 (x---~ +_oo, z--~ ++_oo),. ap/az = +_C(x) (z--~ +_+_o). (5.6) 

We will note that in the case of narrow roughness studied here (bz m cz) the pressure 
perturbations induced are (bz/cz) times larger than when condition (5.4) is satisfied. 

Numerical solutions were obtained here for a roughness f(x, z) = exp (-x 2 - 12). The 
pressure perturbation distributions P(x, 0) repeat in principle the curves presented in Fig. 
I, i.e., transport of pressure perturbations up the flow occurs here also. 

Figures 5 and 6 show isobars for roughnesses of the limiting types b I ~ c I and b I ~ ci, 
respectively. In the first case a convex roughness in the infrasonic flow produces rarefac- 
tion over the entire flow field. In the case of narrow roughness pressure perturbation prop- 
agation is of a complex elliptical character, analogous to that shown in Fig. 6. 

i. 

2. 

3. 

4. 
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DISTRIBUTION OF TURBULENCE CHARACTERISTICS IN A CHANNEL 

WITH INTENSIVE INJECTION 

F. F. Spiridonov UDC 532.517.4 

A large number of studies (see, e.g., [I]) have been devoted to aspects of the distribu- 
tion of flow characteristics in channels with injection. A theoretical analysis of the cor- 
responding solution of the Navier-Stokes equations for laminar flow was first made in [2]. 
Subsequent experimental studies [3-7] showed that with a turbulent flow regime, the profiles 
of the longitudinal and transverse components of the velocity vector are described well by 
limit relations (infinitely large Reynolds number for injection) in [2]. This result, evi- 
dence of the high degree of stability of the flow, can be attributed to laminarization of 
the flow as it is accelerated due to distribution of the injection in the channel [8]. Use 
of the Prandtl model to describe the distribution of the turbulence characteristics in a 
channel with injection [9] leads to relations which are inconsistent with this fact. 

Here we attempt to construct an approximate semiempirical theory to describe flow char- 
acteristics based on the (k - e)-model of turbulence. By numerically integrating the hydro- 
dynamic equations with the (k - e)-model, we calculated flow parameters in a broad range 
of injection Reynolds numbers. The results of the calculations agree well with the experi- 
mental data. 

i. We are examining a steady flow of a viscous incompressible fluid in a plane channel 
(Fig. i) at a sufficiently large distance from the impermeable left wall. Fluid of the den- 
sity p0 is injected through the permeable top wall of the channel at a constant velocity 
qb ~ The equations describing the flow and the boundary conditions appear as follows in 
dimensionless form 

wa, vE~y=--a-E+~-FkE~EE/ + -~y kR-~ ~ / '  ( i . i )  

w ~T + V .~y = _ ay + ~[z ~ ~ -~ / + ~-~y \ ! ~y ,~+~=0, 

where w and v are averaged values of the components of the velocity vector q along the axes 
z and y (see Fig. i): 

y=O: v=O=Ow/Oy; y= I: v=--l,w=O; z----O: w=v=O. (1.2) 

No conditions are imposed on the right boundary because we are studying a self-similar 
solution of system (i.i). We use the following as the scales of length, velocity, and pres- 
sure in (i.I) and (1.2): h ~ is half the width of the channel; qb ~ and p~176 Re = p~176176 
~0 is the characteristic injection Reynolds number for the problem; u ~ is the viscosity of 
the fluid (~0 = ~s + ~t 0, ~s and ~t ~ are the laminar and turbulent components). 

I �84 III I 
�9 117 

o 

Fig. i 
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